3x^=81-x^2

Simple and best practice solution for 3x^=81-x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^=81-x^2 equation:



3x^=81-x^2
We move all terms to the left:
3x^-(81-x^2)=0
We add all the numbers together, and all the variables
-(81-x^2)+3x=0
We get rid of parentheses
x^2+3x-81=0
a = 1; b = 3; c = -81;
Δ = b2-4ac
Δ = 32-4·1·(-81)
Δ = 333
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{333}=\sqrt{9*37}=\sqrt{9}*\sqrt{37}=3\sqrt{37}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{37}}{2*1}=\frac{-3-3\sqrt{37}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{37}}{2*1}=\frac{-3+3\sqrt{37}}{2} $

See similar equations:

| 14z+4z-17z=5 | | k-1/6=-21/2 | | 3.5x+2=7-7x | | 4v=–6v+10 | | 32.c=8 | | 16=3/4x-2 | | -2/5+p=15/6 | | y=1.8(85)-76.9 | | -6p=-7p+7 | | (2x+4)/3=-10/5 | | 7×7^(3x-2)=343×7^2x | | 8−6d=–4d | | 10-2d=-34-6d | | -17y+6=-9-2y | | 20x+16=12x-16 | | P=w393 | | 3p=2p-3 | | 5x^2+7=-18 | | 5a+11+3a-7=-3 | | 150+20x=300+15x | | 5a-(4a-3)=9a-3 | | 5+6u=4+7u | | 30+90=4h | | 1/3d+2=8 | | f(-2)=26 | | 20j=-20 | | -3zz=6 | | 8(1+7r)=7(3+8r) | | 6-2t=-3t | | j3− –8=11 | | c(4)=15(4) | | 3x-7=8x*23 |

Equations solver categories